\( \def\ket#1{{ \left| #1 \right> }} \) \( \def\bracket#1{{ \left( #1 \right) }} \) As discussed in the QFT note, given a frequency $\varphi \; \left( 0 \le \varphi < 1\right)$ that satisfies \[ k \equiv 2^n \varphi \in \mathbb{N}, \label{condition} \] the matrix representation of the following vector is the $k^{\text{th}}$-column of DFT matrix \[ \ket{\widetilde{\varphi}} = \frac{1}{2^{n/2}} \s..
Physics Corner 2022. 7. 17. 10:23
\( \def\ket#1{{ \left| #1 \right> }} \) \( \def\bracket#1{{ \left( #1 \right) }} \) As discussed in the QFT note, given a frequency $\varphi \; \left( 0 \le \varphi < 1\right)$ that satisfies \[ k \equiv 2^n \varphi \in \mathbb{N}, \label{condition} \] the matrix representation of the following vector is the $k^{\text{th}}$-column of DFT matrix \[ \ket{\widetilde{\varphi}} = \frac{1}{2^{n/2}} \s..